Interoperability Improvement in Internet of Things Using Fog Assisted Semantic Frame Work

Dr. Joy Iong Zong Chen
Professor, Department of Electrical Engineering
Da-Yeh University
Taiwan
Email id: jchen@mail.dyu.edu.tw

Dr. S. Smys
Professor,
Department of Computer Science Engineering
RVS technical Campus
Coimbatore, India
Email: smys375@gmail.com

Abstract: Cloud computing is equipped with the numerous of advantageous features to support software and utilities on the Internet of Things (IoT). Cloud-based technology is widely used when offering support for heterogeneous applications integrating specific IoT that follows various semantics. Attaching additional information to raw data sensed with the help of ontology is accomplished in semantic model. The longer distance between the cloud and IoT applications, however, is a bottleneck for vital IoT software. So the paper puts forth a semantic frame work assisted by the fog to enhance the interoperability in the internet of things. The structure put forth moves some of the cloud's commonly used semantic resources sensor networks edge and also offers an effective off-loading technique between fog – fog and fog – cloud devices to diminish total computation time of the task and the energy consumed by the nodes in the fog. The proposed method further follows an efficient mapping technique to transform the data's sensed into a RDF-format such that it is compatible for processing. The proposed model is evaluated on the basis of delay in the service provision, the energy consumed, and the total cost of the system and further the results obtained are compared with the relevant cloud based computing models, to reveal the proficiency of the proposed.

Keywords: Cloud Computing, Semantic Frame Work, Fog Computing, Internet of Things, Interoperability Improvement

1. Introduction

The latest technological progress and the advancements in the communication has made possible the internet of things that is empowered with the multitudes of sensors, and various internet protocols. The development of the internet of things has changed the life style of humans by enabling the things around us
to stay connected using the internet. The communication between the devices takes place without any human intervention by involving diverse group of devices (hardware and software) and the operating system that are heterogeneous. The heterogeneous devices transmit information using any one of the various communication protocols (CoAP-constrained application protocol), MQTT - message queuing protocol, XMPP-extensible messaging and presence protocol, and the AMPQ-advanced message queuing protocol) available utilizing the technologies such as the Bluetooth, zigbee, RFID, Wi-Fi, Wi-max etc. to extend communication. Certainly these technologies as well as the protocols ensure a far better seamless communication that could not be afforded by the conventional computing systems. In the future the devices in the internet of things are anticipated to operate with improved interoperable capability with the technologies and the protocols and the devices that are of different capabilities to extend its accessibility to a broad range of applications.

Every data packets that are produced from the various tangible things connected to the internet of things would be portrayed with syntax, formats and the types that are different and its semantics also differs, for instance the suppose a two persons belonging to two different countries happens to communicate using the social network, using their own mother tongue to transfer information’s. Such services would be made possible by the interoperability that offers a common services for the applications by assimilating the protocols, semantics the technologies used in communication as well the devices that are heterogeneous. The semantic interoperability in the IOT environs that is heterogeneous, the ontology is utilized to equip the raw data that are sensed with the semantic annotations. These functionalities are more commonly instigated in cloud due to its processing capabilities, but experiences a delay in the services as the as the speed in responding for the requisition of the users does not match its processing speed. Although these centralized frameworks, fulfill the desire of numerous of applications, their consumption rate of the time, energy and the bandwidth are very high. These basic restrictions that prevail in the connectivity between the cloud and the devices at the user end make them unsuitable for the IoT based applications such as the real time traffic management, health support and fraudulent detection etc. that require immediate responses.

A real time queries have time constraints and demands responses before the deadline of the query is reached. The evolution of the fog computing enabled the execution of the real time applications with the time limitations at the user end with the assistance of the edge devices. It further provided other benefits to the users such as the minimized latency due to the execution taking place in local processors. Minimized energy consumption and enhanced bandwidth utilization as the repeated as well as the majority of associated information’s are not taken to the cloud for processing and computed close to the user devices.
Although variety of Fog founded architecture are devised in the existing works to carry out effectively the issues that are associated with the heterogeneity of the devices the strategies that accomplish the semantic frame work enhancing the Iot interoperability were not implemented into the devices in the FOG layer.

So to achieve this the semantic frame work that was centralized in the FOG was developed, the devised model was improved further with the better offloading technique to diminish total computation time of the task and the energy consumed by the nodes in the fog. The proposed method further follows an efficient mapping technique to transform the data’s sensed into a RDF-format such that it is compatible for processing.

The paper providing an effective semantic model that is centralized in fog to deliver the meanings for the data sensed is formed with the related works in the section 2 that depicts the various architecture of the FOG and how semantic for the data enables to have an enhanced interoperability. The section 3 present s the objective functions of the proposed offloading and mapping , the section 4 elaborates the proposed semantic frame work and the techniques used in offloading and mapping. The evaluation of the system performance in carried out in section 5, followed by the conclusion in the section 6.

2. Related works

3. Objective functions

The objective functions that are to be optimized using the proposed method is list below

The first objective is the delay incurred in the services in the cloud is optimized in the proposed model as major of the requests are executed in the local device that closer to the user end. The equation 1 is framed such in this regard.

\[
\text{Delay in fog} = \sum (\text{time taken to transmit and receive}) + \sum \text{time of semantic modelling} + \sum \text{Distance}
\]

(1)

The next objective is the energy utilization that depends on the computation and the transmission as well as the reception of the request and its responses respectively. So the energy utilized is calculated as shown in the equation 2

\[
\text{Energy} = \sum \text{energy consumed per bit transmission and reception} \times \text{delay incurred}
\]

(2)

Further the network utilization that depends on the amount of bandwidth used is estimated. As the proposed model segregates the important data from the repeated data and stops the transmission of the irrelevant data packets alone to the fog node capable of processing the requests, the network usage is reduce by 3

\[
\text{Network usage} = \left[\frac{\text{Number of data packets}}{\text{Fog bandwidth}} \right] \times 100
\]

(3)
And finally the average cost is much minimized compared to the computing that takes place in the cloud. The average cost for computing in the fog is given as in equation 4

\[Total \ cost = Computing_cost + storage_cost + communication_cost \] (4)

4. Proposed Work

To extract the data with the highest value, from the enormous amount information’s that are sensed devices associated with the internet of things, computing the information’s becomes indispensable causing the world to be smarter by gaining valuable information’s from the original form of data that are sensed, for this purpose the “semantic annotations” that assign meanings to the data gathered and allows make accurate decisions on the service requisition. The diagram below in the figure.1 shows the various operations involved in a semantic frame work to assign the accurate meanings to the data sensed.

![Diagram of Semantic Framework](image)

Figure.1 Essential Parts of Semantic Frame work

This process was traditionally facilitated by the cloud, with the data that were accumulated being forwarded to the cloud for filtering, molding that is modeling, mapping and annotating its meaning as well as reasoning to have an enhanced computing. But this computation handled in cloud consumed more time as well as energy and bandwidth resulting unsuitable for the requisition with the time constraints. So to minimize the time of computation along with the energy, latency, bandwidth utilization and cost. The semantic framework from the cloud is shifted to the cloud. A hierarchical multitier Fog network is developed with
two layers, to perform the semantic annotations and the mapped data are offered to the cloud for processing if it is not time constrained and requires high computational capabilities. By this heavy flow of user requisitions to the cloud is stopped and the much of the energy consumption and the time are saved. The figure 2 is the fog based semantic framework for the IOT services.

As shown in the figure 2 the sensors or the IOT devices convey the information over the low layer of the FOG, this layer filters the appropriate and the repeated data, accumulates the data filtered with the high quality and offloads it to the next higher layer in the FOG, utilizing the Single-owl -file ontology that is educated about and interconnected with the radio frequency identification, sensors and actuators, the data in are attached with the meaningful annotations, it is light weight ontology which is integrated into the proposed architecture using the middle Ware that is compatible with it, this middle ware converts the data that is composed and modelled using the meaningful annotations into a format that is more suitable for computing, the format followed here is the RDF format the steps shown in the figure. 3 is describes the process of mapping the data into a RDF format.
The semantic annotation is attached to the data, by extricating the conceptions as well as properties from the ontology and linking it to the data that are gathered from the devices of the internet of things, the proposed method utilizes the JSON for the mapping of the Data as shown in fig.3, this a “light weight javascript object notation” providing the association between the strategy as well as the ontology. These mapped data are processed in the FOG based on their computational complexities and this decided by the controller located in the FOG nodes.

Based on the time constraints on the requests, the computing capacity of the nodes in the FOG and the average length of the requests queued, the controller in the FOG layer decides the whether the off-loading has to take place within the fog nodes are to the cloud, usually the request with latency tolerance and that which demands a storage for long term are always directed to the cloud. The steps below describes the offloading among the FOG nodes and the way the nodes are selected.
Thus the proposed model enables to perform a semantic modelling in the fog node itself and further process the data in the fog node itself based on its computational requirements of the requests and the evaluation of the proposed model using the network simulator -2 described in the next section shows the capability of the proposed method on the basis of the energy used up, delay in the services and the average cost as well as the network utilization.

5. Performance Evaluation

The proposed strategy was evaluated using the network simulator -2 on the basis of delay incurred in the service, the energy utilized, the network utilization and the average cost, the results obtained where further compared with the conventional centralized cloud where the semantic model is executed in the cloud.
Table 1: Simulation Parameter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>simulation duration</td>
<td>1000*1000 ms</td>
</tr>
<tr>
<td>Number of User Request</td>
<td>100</td>
</tr>
<tr>
<td>Energy per Node</td>
<td>2 joules</td>
</tr>
<tr>
<td>up-link bandwidth</td>
<td>50-100 Mbps</td>
</tr>
<tr>
<td>down-link bandwidth</td>
<td>10-50 Mbps</td>
</tr>
<tr>
<td>RAM</td>
<td>1000 Mb</td>
</tr>
<tr>
<td>Number of Fog Nodes</td>
<td>10</td>
</tr>
</tbody>
</table>

The table .1 is the particulars of the parameters utilized in the simulating the proposed model.

Figure 4: Delay in the Service

ISSN: 2582-4104
The results in fig. 4 shows the delay observed in the while executing the user request in the FOG and the Cloud, the delay incurred shows that the proposed method has faster response compared to the cloud as the execution takes place the local device that is closer to the user end.

![Figure 5: Energy Utilization](image)

Figure 5 Energy Utilization

The fig. 5 shows the results observed on the energy utilized in the on computing and transmitting the requests to the within the FOG and the Cloud. The Results shows that the proposed method has minimized the majority of its energy utilization as the execution takes place in a device very close to the user devices.
The Fig. 6 provides the Bandwidth Utilization of the proposed model, the bandwidth utilization of the proposed model is much reduced compared to the conventional cloud as most of the irrelevant data are reduced by the process of filtering. The table 2 is the average cost observed on the proposed and the conventional model for different number of user request.

<table>
<thead>
<tr>
<th>No. of User Request</th>
<th>Proposed Fog Service ($)</th>
<th>Conventional Cloud Services ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>15</td>
<td>45</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>56</td>
</tr>
<tr>
<td>30</td>
<td>24</td>
<td>57</td>
</tr>
<tr>
<td>40</td>
<td>27</td>
<td>59</td>
</tr>
<tr>
<td>50</td>
<td>30</td>
<td>60</td>
</tr>
<tr>
<td>60</td>
<td>34</td>
<td>63</td>
</tr>
<tr>
<td>70</td>
<td>37</td>
<td>65</td>
</tr>
<tr>
<td>80</td>
<td>40</td>
<td>75</td>
</tr>
<tr>
<td>90</td>
<td>45</td>
<td>80</td>
</tr>
<tr>
<td>100</td>
<td>49</td>
<td>95</td>
</tr>
</tbody>
</table>

Table 2 Average Cost

Figure 6 Bandwidth Utilization
6. Conclusion

The paper has devised a Fog centered semantic model for enhancing the interoperability of the IOT devices with a much reduced energy utilization, delay in the service, bandwidth utilization and cost, by devising a proper offloading procedure that prevents the major of the requests from being executed in the cloud. The semantic modeling is totally taken care by the FOG in the proposed model this further reduces the amount of irrelevant data being offloaded thus minimizing the major consumption of the bandwidth minimizing the network usage, and the total cost, the single-owl-file ontology used in the paper and the RDF mapping done to add meaningful annotations to the data further enhances the interoperability in the IOT devices. The proposed method was simulated using the network simulator-2 and its performance was evaluated on the basis of the latency, energy usage, network utilization and the cost of processing. This results attained for the proposed framework were much better compared to the capability of the conventional cloud in terms of latency, energy usage, network utilization and the cost of processing.

References

